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ABSTRACT

Information Security is traditionally treated in three main categories: Con-
fidentiality, Integrity, and Availability. While much work has been done on
modelling Confidentiality and Availability, aspects involving comprehensive
modelling and quality of data integrity in complex systems appear to be, on a
relative scale, much less well understood and implemented. Further, most work
on Integrity and resultant implementations seems to have focussed more on a
matters related to source authentication and transmission assurance. However,
the quality of data aspect is becoming more critical for attention, given the
increasing levels of automation of information fusion and data transformation
in a globalised Cyberspace.

In this paper, we survey the existing integrity models and identify short-
comings of these with regard to a general integrity framework encompassing the
quality of data aspect. We then propose and formally model a new framework,
illustrating the approach with reference to use cases built around the Secure
Information ATM (SIATM) - a highly accreditable security system currently
under development.
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A Formal Integrity Framework with Application to a Secure
Information ATM (SIATM)

Executive Summary

Information Security is traditionally treated in three main categories: Confidentiality, In-
tegrity, and Availability. While much work has been done on modelling Confidentiality
and Availability, aspects involving comprehensive modelling and quality of data integrity
in complex systems appear to be, on a relative scale, much less well understood and im-
plemented. Further, most work on Integrity and resultant implementations seems to have
focussed more on a matters related to source authentication and transmission assurance.
However, the quality of data aspect is becoming more critical for attention, given the in-
creasing levels of automation of information fusion and data transformation in a globalised
Cyberspace. Without a comprehensive ability to measure integrity systematically, consis-
tently, and within its correct context, military systems may struggle to take full advantage
of emerging trends.

Two primary and distinct models have previously been proposed as a foundation for
systems to manage and reason about data quality integrity as a part of the information
security equation: the Biba Integrity Model and the Clark-Wilson Integrity Model. In
this paper, we first review the Biba and Clark-Wilson integrity models, highlighting the
key attributes, limitations and later extensions to the models. The balance of the paper
identifies research challenges in addressing integrity and, critically, proposes a new model
that captures and supports a broader range of integrity dimensions. Finally, we briefly
discuss a use case for the model involving an actual implementation of a security device
(Secure Information ATM or SIATM) which is to undergo test deployment in several
military systems.
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1 Introduction

Information Security is traditionally treated in three main categories: Confidentiality, In-
tegrity, and Availability. While much work has been done on modelling Confidentiality and
Availability (with a publicised focus on Denial of Service), aspects involving comprehen-
sive modelling and quality of data integrity in complex systems which are integrated into
the overall security equation appear to be, on a relative scale, much less well understood
or implemented. Further, most work on Integrity and resultant implementations seems to
have focussed more on matters related to source authentication and transmission assur-
ance, for which there is a significant body of knowledge (see e.g. [Menezes, van Oorschot
& Vanstone 2001] or [Bishop 2003]). However, given the increasing levels of automation
of information fusion and data transformation in a globalised Cyberspace, the quality of
data aspect is becoming more critical for attention. Automated data fusion using mul-
tiple sources under multiple jurisdictions with differing systems assurance and differing
algorithmic implementations, all in a distributed environment, is expected to become the
norm. Given this trend, the effect of a contaminated (or even more subtly out of context)
data item or stream being fused or transformed into an output stream involving auto-
mated intermediate processing stages, and where one or more transformation processes
themselves may have differing correctness, context and ownership/control/policy imple-
mentations (and where some critical decision is taken on the viewed output), is not at all
well understood. Furthermore, the output may itself be viewed by some automated process
which undertakes a course of action. Even if the viewing process itself is well implemented,
a contaminated intermediate processing stage, or data stream which underwent fusion and
transformation, could result in an incorrect course of action.

Without a comprehensive ability to measure integrity systematically, consistently, and
within its correct context, military systems may struggle to take full advantage of emerging
trends such as heterogeneous Cloud based systems (note that there are a still a number
of challenges in the Confidentiality and Availability areas yet to be solved as well as the
Integrity aspects). This limited capability causes significantly greater incurred expense in
the use of many separate single purpose systems, which in themselves may introduce other
errors or low integrity issues. These issues may include, for example, multiple human in
the loop failure modes.

Some may argue that work in Safety Critical areas focusses primarily on integrity and
this in itself is true. However, it tends to deal with the correctness of function in a single
context for a system, and does not focus on multiple contexts of data and processing
modules, and trends to promoting a view that a system either has a sufficient level of
integrity or not rather than one which presumes multiple contexts which may change
dynamically.

Two primary and distinct models have previously been proposed as a foundation for
systems to manage and reason about data quality integrity as a part of the information
security equation: the Biba Integrity Model [Biba 1977] and the Clark-Wilson Integrity
Model [Clark & Wilson 1987]. In this paper, we first review the Biba and Clark-Wilson
integrity models, highlighting the key attributes, limitations and later extensions to the
models. The balance of the paper identifies research challenges in addressing integrity and
proposes a new model that captures and supports a broader range of integrity dimensions.

UNCLASSIFIED 1



DSTO–TR–2726 UNCLASSIFIED

Finally, we briefly discuss a use case for the model involving an actual implementation of a
security device (Secure Information ATM or SIATM) which is to undergo test deployment
in several military systems.

1.1 Biba Integrity Model

The Biba Integrity Model [Biba 1977] stated that the information protection issue has
two parts: the first part addresses the proper dissemination of information, while the
second part relates to the validity of information, or integrity. Biba went on to propose
a model that focussed on providing a measure of integrity for subjects and objects, and
the prevention of the invisible introduction of data with lesser integrity within a defined
system. Biba defined a mathematical model to describe allowable read/write interactions
between pairs of subjects and objects, based on a set of ordered integrity levels. Using the
model, he presented three integrity policies, described below.

The strict integrity policy is the dual of the Bell-LaPadula confidentiality model [Bell
& LaPadula 1973]. Given the function, lvl , which provides the integrity level of a subject
or object, for any subject s (and s1 and s2), and object o, the strict integrity policy is as
follows.

1. s can read o if and only if lvl(s) ≤ lvl(o)

2. s can write to o if and only if lvl(o) ≤ lvl(s)

3. s1 can execute s2 if and only if lvl(s2) ≤ lvl(s1)

In summary, the policy allows data to flow from high integrity levels to low integrity
levels only (see Figure 1).

Figure 1: Data flows towards low integrity.

When this policy is implemented in conjunction with a confidentiality policy (such as
the Bell LaPadula model) data flow is even more restrictive. If Biba and Bell LaPadula
levels correspond such that integrity levels increase as confidentiality levels increase, in-
formation remains at level. However, in reality, each integrity level may contain data of
different confidentiality levels. In this case, the model allows information to flow between
levels; however, it flows to lower integrity levels and to higher confidentiality levels (see
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Figure 2). Over time, the natural result, is a system populated by information that is
highly classified with low integrity.

Figure 2: Data flows towards high classification and low integrity.

The low-water mark policy is similar to the above, only it allows for more interaction
between entities by enabling subjects to read objects with a lower integrity level. However,
once such a read takes place, the subject’s integrity level becomes that of the object.

Like the low-water mark policy, the ring policy allows subjects to read objects with
a lower integrity level but, in this case, without the need for subjects to be downgraded.
After reading from a lower level, the subject can write to its level, thus allowing information
to flow to a higher integrity level. However, the condition under which this is appropriate is
not specified as part of the model; it is left to the subject to validate observed data. Indeed,
Biba introduces a capability policy to cater for trusted processes that operate outside of
the policies allowing data integrity levels to be upgraded.

Biba also introduced a discretionary protection policy to allow administrators to spec-
ify what particular users can do (read/write/execute) to particular objects via subjects.
Again, this is a “dual” of traditional access control lists in discretionary security policies
for confidentiality maintenance.

There have been several applications and variations of the Biba model ([Hu & Feng
2008]; [Zhang 2009]; [Lunt et al. 1990]; [Schell & Denning 1986]; [Zun, Tao & Wei-
hua 2009]; [Tang & Qing 2006]), including two that incorporate the Bell-LaPadula confi-
dentiality model ([Zhang, Yun & Zhou 2008]; [Lipner 1982]).

1.2 Clark-Wilson Integrity Model

[Clark & Wilson 1987] expanded the scope of integrity maintenance when compared to the
Biba model by including protection against authorised, but improper, modifications for
the purpose of preventing and detecting fraud in commercial systems. The Clark-Wilson
model proposes two integrity levels based on a distinction between constrained data items
(CDIs), data that is already part of the system, and unconstrained data items (UDIs), new
data that is being introduced to the system.

Well formed transformation procedures (TPs) and integrity verification procedures
(IVPs) are introduced as the means of ensuring a system progresses from one valid state
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to another, based on one or more inputs (see Figure 3). Typically, TPs operate on a set of
CDIs. However, certain certified processes may also operate on UDIs in order to introduce
the data to the system, thus labelling them as CDIs.

Figure 3: A well formed TP operating on two CDIs with a combined output.

The model is described by a set of enforcement rules and certification rules: those that
state what can be maintained by the system, and those that state what must be done by
entities outside of the system, respectively.

Separation of duty and general access control is catered for by requirements to restrict
what TPs users can execute, and on which particular CDIs. Other security requirements
regarding user authentication and audit logging are also expressed within the rules.

Although the Clark-Wilson model assumes a single high level of integrity applies to
CDIs, a model with more explicit rules for managing system data at multiple integrity
levels (for instance, Biba’s model) may be incorporated within it [Bishop 2003].

There have been several applications and variations of the Clark-Wilson model ([Hanigk
2009]; [Ge, Polack & Laleau 2004]; [Qingguang, Sihan & Yeping 2006]), including one
which, as [Bishop 2003] describes, incorporates the Biba model as the integrity policy
used [Zhou-Yi, Ye-Ping & Hong-Liang 2010].

1.3 Limitations of the Models

The Clark-Wilson model provides a general framework in which data integrity can be
managed; however, it can be interpreted in many ways and needs to be coupled with a
model providing stricter guidance for practical data integrity management.

Both models describe the need for human intervention and certified or trusted processes
to upgrade or establish data integrity. Little guidance for such processes is provided, thus
leaving the models inherently subject to integrity decay.

Although the Clark-Wilson model allows for processes to operate on multiple data
sources (unlike Biba’s model), neither model considers how the existence of multiple
sources of related data can affect their assigned integrity levels. For example, one piece
of data may increase or decrease the integrity level of another based on whether the data
is confirmed or contradicted, and also on the degree of independence of the data sources.
Furthermore, the models do not capture contextual information by which independence is
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inferred. There are numerous examples of where this can be critical depending on the mis-
sion of the processing taking place and the data incest problem for sensors. As a particular
example consider the safety critical case where a plane crashed due to a faulty altitude
sensor which provided the same input into two seemingly separate and independent sys-
tems (the pilots asked a tower for an altitude check on hearing an alarm, but unfortunately
the tower used the same faulty sensor as the plane for its determination [Casey 2006]).

Although Biba’s model aims to prevent potential corruption or decrease in assured
integrity of data by lower integrity subjects, the model assumes subjects won’t corrupt
data at (or below) level deliberately or accidentally, whereas the Clark-Wilson model
attempts to address this by requiring separation of duty. Here Clark and Wilson attempt
integrity maintenance but note that the model implies a single level of integrity (either
integrity is maintained or it is not) thus negating opportunities to make decisions based
on the notion of sufficient integrity for the particular context and circumstances at hand
(these may change under different conditions which cannot be encoded in the TP). Even if
the Biba model is included along with the notion of separation of duty as per [Bishop 2003],
the resultant model still implies a single context for a system when making a comparative
assessment between entities thus placing enormous constraints on what would constitute
sufficient integrity.

Traceability is necessary to provide auditing and analysis, including the ability to make
decisions about data integrity based on the history of data. The Clark-Wilson model allows
for traceability, whereas there is no discussion in the Biba model.

1.4 Requirements and Challenges for a New Model

The systems for which we want to manage integrity involve data from all manner of sources
and different processing requirements across multiple jurisdictions, all with varying con-
texts and levels of integrity. In these systems we need a way of supporting the automation
of decisions regarding the integrity of data and processing as it is sourced, used and main-
tained. A quantitative measure of integrity (Biba employs a simple quantitative scheme)
will capture the notion of such varied levels and enable an implemented system to inter-
pret it for decisions seeking sufficient integrity for the context and circumstances of the
moment. In terms of Clark-Wilson, all data in our system will be CDIs tagged with an
associated measure of integrity. Ideally, the measurement can be comparable across en-
tities (for example, subjects and objects), while maintaining context and not introducing
out of context comparisons

We want our model to be able to increase or decrease data integrity levels based
on multiple sources of data. In particular, we are interested in what we call integrity
amplification, that is, when multiple sources of data are combined to produce data of a
higher integrity level. This can provide a method to address the inherent decay trend in
existing integrity models and assist to avoid the need for system wide certified upgrade
processes or human intervention. This may be achieved by directly providing support
for measuring the independence of data sources. To reason about multiple data sources
effectively, our model will need to account for the context of the data. Data may have a
high level of integrity in one context but a lower level in another.
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There are many dimensions to context such as data source, time of creation, method of
instantiation, and classification (to name a few) which can all contribute to the context of
data; the number of possible contexts is actually infinite and dependent on the particular
purpose for which processing is undertaken. Our model will need to provide practical
support for these multiple dimensions in order to contribute to a measure of integrity
which can be used in the context of the moment.

Like Clark and Wilson, we want our model to provide support for traceability. For
example, we must be able to identify when and from where certain data has been intro-
duced, and when, how and by whom operations have been made, and whether operations
have been performed by one individual or multiple.

For the reader’s convenience, the following table highlights the differences between the
two prominent existing models and our desired model.

Biba Clark-Wilson Desired Model

Quantitative measure Y N Y

Comparable across entities Y N Y

Automated integrity amplification/ N N Y
attenuation

Data source independence N N Y

Data context sensitivity N N Y

Traceability N Y Y

Separation of duty N Y Y

Table 1: A comparison of existing models against requirements.

2 Overview of Approach

Our approach is rooted in the observation that the integrity of a Data Element is de-
pendent on a multi-dimensional Context Vector. In an appropriate coordinatization of
the space spanned by such Context Vectors, each axis will represent ideally a well-defined
independent and atomic conceptual context, e.g. authentication or reputation. In our
model, the integrity of the Data Element is derived from this in a manner which will be
described below.

In practise, the number of context dimensions in our “universe” of systems is effec-
tively infinite. An assignment of a meaningful value for all dimensions typically would
not make sense, and, naturally, for reasons of practicality of implementation, we do not
want to attach to each Data Element an all-encompassing vector which assigns a value to
a component in each of these dimensions. Hence the approach adopted is one of specify-
ing a particular integrity model relevant to a system or set of systems, with that model
identifying the context dimensions of relevance. Only context values in those dimensions
are required to be associated with Data Elements in that model. In addition, as we will
describe, the specification of a particular integrity model also describes functions specific
to that model which will update the Context Vector of a Data Element in response to
actions on that data, and evaluate integrity for that Data Element as a function of its
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Context Vector. (Issues to do with the handling of data aggregation, e.g. evaluation of
integrity across files, will be briefly touched on later. For now, the focus is on the simple
atomic data constituents within the model.)

We introduce the concept of a Model List as an ordered collection of models. Specific
models in a Model List are to be referenced via a Model Index.

To each Data Element we attach an Integrity Label.

Data Integrity Label where an Integrity Label comprises

• a Model Index,

• an Initial Integrity value, and

• a Context Vector.

The Integrity Label is securely bound to the Data Element, though the mechanism of
this binding is not relevant at this level of abstraction.

In turn, a Context Vector comprises an ordered set of one or more scalars, where each
scalar represents the value of a context dimension. Note that the actual space (e.g. contin-
uous vs discrete) may be specified independently for each model and for each dimension.

The Model Index identifies an Integrity Model. This comprises

• a list of the context dimensions which are of relevance to this model,

• a functional specification, contextUpdate, of the update of the Context Vector in
response to an Event, and

• a functional specification, evaluateIntegrity, of the evaluation of the Integrity of the
Data Element from the Context Vector and Initial Integrity.

The approach taken is as follows. The Context Vector attached to a Data Element
is initialised appropriately for the selected Model Index, i.e. it is assigned a value for
each of the Context Dimensions identified in the specific model as of relevance. Typically,
this will take place either when the Data Element enters the system (across some defined
boundary) or is created (special case of entering the system). Subsequently, each Event
which occurs within the system and which has an effect on that Data Element will update
the Context Vector as per the corresponding function, updateContext, specified in the
specific model. At any instant, the Integrity of the Data Element may be evaluated from
its current Context Vector, again using the corresponding function, evaluateIntegrity, from
the specific model.

2.1 Transition of Data Elements Between Models

The framework must support transition of Data Elements between models, and also facil-
itate entry of fresh data into the system. In this paper, we address this problem via use
of an Initial Integrity value attached to each Data Element.

UNCLASSIFIED 7
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When a switch of Integrity Model is made (i.e. by updating the Data Element’s Model
Index), the current Context Vector may be used to evaluate the current integrity value
(via the evaluateIntegrity method of the initial model). This value may then be stored in
the Initial Integrity value of the Data Element in the new model and/or an initial Context
Vector is assigned in the new model (for the new set of relevant dimensions). Hence the
evaluateIntegrity method must take into account the Initial Integrity value as well as the
current Context Vector in determining the current integrity of the data. Similarly, we also
include the Initial Integrity value as an input to the contextUpdate method, since such a
dependency cannot in general be excluded. A formal representation of this approach is
given in Appendix B.

However, we note here that the authors regard this approach to data transition as not
necessarily natural within the given framework. Further research is planned to explore
other alternatives. Other approaches than the use of the Initial Integrity value above
might include the following.

• The simplest approach is for the Context Vector attached to each Data Element to
include all of the Context Dimensions relevant to the set of models through which the
Data Element passes. This, of course, will typically be impractical in terms of the
size of the vector alone. In addition, within a given model, one could not reasonably
expect it to actively maintain, in response to events, the set of dimensions which it
does not regard as relevant; hence these Context Dimensions would be out of date
when the transition to the next model is made.

• A slight variation on the above approach is to accumulate Context Dimensions in the
Context Vector attached to the Data Element as it passes through the various models.
This mitigates the worst case approach above of handling all Context Dimensions at
all times. However, this might lead to a proliferation of models, and, moreover, one
would be forced to either, in a given system, cope with a multitude of models (for
data arriving from different external models), or adopt a single superset model within
the system, growing with every new external model from which data is encountered.

• In another approach, one could introduce some mapping (indexed by the pair of
model indices) which takes the final vector from one model and maps it to an initial
vector in the new model. This is, in some sense, equivalent to the Initial Integrity
value approach adopted currently, in that we need to ensure that the evaluation of
the integrity in the original model for the final vector is the same as the evaluation of
the integrity in the new model for the initial vector in that model. However, it may be
a more natural formulation for many purposes. One issue with this approach though
would be that the choice of the initial vector in the new model will typically not be
unique. A (typically infinite) set of vectors will evaluate to the correct integrity;
with not all of these vectors necessarily being truly equivalent, since this will depend
on the specific details of the models. The use of an Initial Integrity value instead
avoids having to make what might be a semi-arbitrary choice in the mapping.

• Finally, an alternative approach is to introduce an additional integrity model (in our
indexed list) which is the fusion (in some sense to be defined) of the two models
involved in the transition, and which acts as a staging post for the transformation
of the Data Element and its metadata.
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3 Formalised Generic Integrity Model

In this section, we shall present an Object Z formulation of the generic integrity model
described in the previous section.

3.1 Data Types

We introduce a generic type describing the data. At the moment, we treat data as simply
opaque chunks.

[Data]

For the context and integrity values, we introduce top level classes which are used
in the specification of the generic structure of an integrity model. Particular integrity
models will sub-class these in order to accommodate their specific needs, e.g. one model
may require discrete values (such as Biba - see the Appendices), whilst another may utilise
continuous values, such as probability-based models.

ContextValue

IntegrityLevelType ::= IntegrityLevelProbType | IntegrityLevelBinaryType

IntegrityLevel

type : IntegrityLevelType

We also define a class to represent a User, including a user rating of reputation. Note
that this will be dynamically maintained by a mechanism currently out of scope, based on
e.g. past user actions and the consequences of those actions.

User

reputation : ↓ContextValue

The event types and context dimensions are universal to all models. We shall populate
them here with specific values pertinent to our SIATM use case to be explored later. These
two definitions will simply grow as more models and instantiations thereof are added to
our universe.

EventType ::= login | logout | copyToUSB | copyFromUSB | printDoc | transferDoc |
downgradeDoc | witnessedDowngradeDoc
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ContextDimension ::= sourceAuthentication | sourceAuthorisation | sourceReputation |
tamperResistance | reliability | time |
completeness | storage | transport |
generic

For future reference when we discuss the SIATM in a later section, sourceAuthentication
will represent the degree of confidence in the authentication of the source (perhaps a user)
of a Data Element. It will be affected by both the number and quality of authentication
factors utilised. sourceReputation will represent the degree of confidence in the source’s
reputation, based upon their history of actions. sourceAuthorisation will represent the
degree of confidence that the authorisation of the user’s access to the DataElement was
correctly verified.

3.2 Event

The Event object captures the time-stamped type of an event, the associated user and the
associated context. For example, for ATM-related operations, the context values in the
associated context vector will represent features specific to that ATM and its environment.
Note that this is a generic sequence of undefined length, whereas the context vectors
associated with individual Data Elements are of fixed length corresponding to a specified
Integrity Model (see below). Hence the Event may capture more information than is
required for a given model in which it is being used.

As part of this construct, we introduce a specific ContextVector type to capture a set of
mappings from Context Dimensions to Context Values (specifically, the relevant sub-class
of Context Value pertinent to the specific model in question).

ContextVector == ContextDimension 7→ ↓ContextValue

Event

type : EventType;
timestamp : N;
user : User ;
contextVector : ContextVector

In addition, we define an event class specifically for logging of events in an audit trail.
In our ATM specific example later, this will be used in the ATM’s internal audit log.

LogEvent

type : EventType;
timestamp : N;
user : User
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3.3 Integrity Model

The integrity model specifies the relevant Context Dimensions for that model, the relevant
Context Dimensions for a given Event Type within the model, how a corresponding context
vector is to be updated according to a given event, and how the integrity of a tagged Data
Element is to be computed from the Context Vector and Initial Integrity of that Data
Element.

IntegrityModel

unitVector : ContextVector

relevantDimensions : FContextDimension;
relevantEventDimensions : EventType ↔ ContextDimension;
contextUpdate : (↓IntegrityLevel × ContextVector × Event) 7→ ContextVector ;
evaluateIntegrity : (↓IntegrityLevel × ContextVector) 7→ ↓IntegrityLevel

dom unitVector = relevantDimensions
ran relevantEventDimensions ⊆ relevantDimensions
dom contextUpdate = {l : ↓IntegrityLevel ; v : ContextVector ; e : Event |

dom v = relevantDimensions ∧
e.type ∈ dom relevantEventDimensions ∧
ran({e.type}C relevantEventDimensions) = dom e.contextVector}

ran(dom evaluateIntegrity) = {v : ContextVector | dom v = relevantDimensions}

The idea is that each Data Element (see below) will carry a context vector recording
its context for each of the relevant context dimensions for the model. However, each event
is only required to carry context information about the set of dimensions relevant to that
event in the model. This is for reasons of economy - we do not want to require every event
to be forced to carry information unrelated to that event’s operation. It also means that
we may more easily build up a model containing multiple events event-by-event, since we
will not need to retrofit new dimensions to the schemas representing existing events when
we add a new event bringing new dimensions to the model.

On that last point, the intent is that the relevant dimensions for the model as a whole
will be as small as possible, for the reasons espoused in the introduction to this section.
Hence, typically we would expect the relevant context dimensions for the model as a whole
to be the union of the dimensions relevant to each of the event types associated with the
model.

Note that the unitVector is a Context Vector (covering the relevant Context Dimensions
of the model) which is used to initialise the Context Vector for new Data Elements.
Typically, in a probabilistic type model, it is the vector (1, 1, . . . , 1).

3.4 File

We introduce the concept of a File as a sequence of Data Elements, and it is the Data
Element which is integrity-decorated. The granularity at which this breakdown occurs is
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not relevant at this abstract level. We note though that when reasoning about the integrity
of a file, it may be that the entire file needs to be treated itself as a subject of integrity
considerations. Concepts such as Completeness and Consistency only really make sense
at this level, rather than at the level of a Data Element. The introduction of the relevant
hierarchical relations amongst Data Elements within a given file are left to future work.

For each such Data Element, an initial Context Vector is assigned on creation. This
Context Vector may then be updated, using the function specified by the model, as each
Event occurs to the data. The overall Integrity is a function of this Context Vector and an
Initial Integrity value, computed using the function specified by the model. As described
above, these operations of context update and integrity evaluation are model specific.

Note that the model referenced by the Data Element is a sub-class of the Integrity-
Model. We shall later define sub-classes representing specific integrity models. We also
stress here that though we referred earlier to each Data Element carrying an index into
a list of integrity models, and this is how an implementation would be realised, for the
purposes of the abstract model, the Data Element actually includes the integrity model
itself.

DataElement

data : Data;
context : ContextVector ;
initialIntegrity : ↓IntegrityLevel ;
integrity : ↓IntegrityLevel ;
model : ↓IntegrityModel ;
contextUpdate : Event 7→ ContextVector

dom context = model .relevantDimensions
dom contextUpdate = ran(dom model .contextUpdate)
∀ e : dom contextUpdate • contextUpdate(e) = model .contextUpdate(initialIntegrity , context , e)

getIntegrity
integrity ! : ↓IntegrityLevel

integrity ! = model .evaluateIntegrity(initialIntegrity , context)

We note that contextUpdate does not actually update the context vector of the Data
Element. It simply outputs what would be the updated context vector should the operation
occur. For example, in the Biba Strict Integrity policy, integrity values do not change.
One may regard the model as stating that operations are forbidden should the integrity
value change were the operation to be allowed. See Appendix A for more discussion.

We finally define the file, with a function to evaluate the integrity of a specified Data
Element in a given file.

File

fileData : seq DataElement
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evaluateIntegrity =̂ [ d? : ran fileData ] • d?.getIntegrity

getId
file! : File

file! = self

4 Probabilistic Model

As a specific example, and for later use, we define here an instance of the generic model
using explicit functions for contextUpdate and evaluateIntegrity, where context values are
interpreted probabilistically, i.e. the Context Value represents the level of confidence
appropriate to that particular Context Dimension for the Data Element in question.

To that end, we explicitly define the appropriate sub-classes of the ContextValue and
IntegrityLevel spaces.

ContextValueProb
ContextValue

value : R

value ≥ 0 ∧ value ≤ 1

The integrity level is a (non-negative) real, which will ultimately be defined in our
example model as the length of the context vector, once we have assigned a metric to that
context space.

IntegrityLevelProb
IntegrityLevel

value : R

type = IntegrityLevelProbType

We need a utility function which performs component-wise multiplication of context
vectors. Note that this function ignores context dimensions not in common between the
two operands.

multiply : ContextVector × ContextVector → ContextVector

∀ a : ContextVector ; b : ContextVector •
multiply(a, b) = {d : ContextDimension; v : ContextValueProb |
∃ p, q : ContextValueProb • (d , p) ∈ a ∧ (d , q) ∈ b ∧ v .value = p.value ∗ q .value}

We also define another utility function which sums a given real-valued function over a
specified set.
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[S ]
setSum : (S → R)→ R

∀ f : dom setSum •
f = ∅⇒ setSum(f ) = 0 ∧
f 6= ∅⇒ (∀ p : S ; q : R | (p, q) ∈ f • setSum(f ) = q + setSum(f \ {(p, q)}))

We can then define our model.

Context update, because of the simple probabilistic interpretation, is simply (context
dimension) coordinate-wise composition of (independent) probabilities by multiplication.
The initial context vector will typically start as the sum of the individual orthogonal unit
basis vectors (i.e. (1, 1, . . . , 1)). Then our update mechanism reflects the fact that we
interpret each component as a confidence level in the validity of that particular aspect of
context, and we start with full confidence, for argument’s sake.

Note that since some of the dimensions relevant to the model are not relevant to a
specific event, the confidence values in those dimensions are not affected by the update.
For example, the context value corresponding to the context dimension measuring the
confidence in the authentication of a user may be largely irrelevant to the integrity of the
file in an operation such as file transfer (with no opportunity for editing of the data).
However, establishment of the user’s identity is clearly critical for integrity of the data in
other use cases, as well as of course for other security factors, such as confidentiality of
the file.

The net effect of this simple scheme is a gradual decay in confidence (and hence in-
tegrity). We shall address this issue later when we discuss fusion/amplification (see Ap-
pendix C).

In order to evaluate the integrity, we introduce a “metric” g on the space of context
vectors. This will measure the contribution to integrity of the corresponding context di-
mensions. In terms of the probabilistic interpretation given to the coordinates, some other
measure probably makes more sense, e.g. the simple product of the independent context
dimensions’ probabilities. Hence we stress that this particular choice of a ”Euclidean-
distance” metric is just an example - specific instantiations of the framework as a par-
ticular model will need to make a choice of function which is of value in their particular
scenario.

Typically, we would expect the matrix g to be diagonal, but in general it will be a
symmetric non-negative definite matrix1, which allows for the fact that our coordinate
choice may not be orthogonal, i.e. the context dimensions may not be independent.
In such cases, armed with the “dot product” (inner product) of vectors defined by this
metric, one may then go through a standard procedure to identify an orthogonal basis
(and diagonalise the metric in those new coordinates).

Essentially, the integrity is the “length” of the Context Vector v , i.e.
√

(
∑

i ,j vivj gij ).
The use of this “metric” also allows us to weight contributions to the overall integrity from

1We can force it to be positive definite by simply, in the first place, selecting context dimensions which
have some non-zero impact on the overall integrity, i.e. choose our set of Relevant Dimensions for the
model appropriately.
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different dimensions according to their relevance in that particular integrity model, i.e. in
the context in which integrity is being evaluated.

We need one more utility function:

sqrt : R→ R

∀ r : R | r ≥ 0 •
∃ i : R | i ≥ 0 • i ∗ i = r ∧ sqrt(r) = i

ProbabilityModel
IntegrityModel

unitVector : ContextDimension 7→ ContextValueProb

∀ v : ran unitVector • v .value = 1

g : (relevantDimensions × relevantDimensions)→ R

ran(dom(dom contextUpdate)) ⊆ ContextDimension 7→ ContextValueProb
evaluateIntegrity ∈

IntegrityLevelProb × (ContextDimension 7→ ContextValueProb) 7→ IntegrityLevelProb
∀ i : IntegrityLevelProb; v : ContextDimension 7→ ContextValueProb |

(i , v) ∈ dom evaluateIntegrity •
(∃ integrityContribution : ((relevantDimensions × relevantDimensions)→ R) •

(∀ d , e : relevantDimensions •
∃ p, q : ContextValueProb • v(d) = p ∧ v(e) = q ∧
(integrityContribution(d , e) = g(d , e) ∗ p.value ∗ q .value)) ∧

(∃ j : IntegrityLevelProb • (j = evaluateIntegrity(i , v) ∧
j .value ≥ 0 ∧
j .value = i .value∗

sqrt(setSum[relevantDimensions × relevantDimensions](integrityContribution)))))
∀ l : IntegrityLevelProb; v : ContextVector ; e : Event | (l , v , e) ∈ dom contextUpdate •

∃ f : ContextVector • contextUpdate(l , v , e) = multiply(v , f ) ∧
f = unitVector ⊕ e.contextVector

The extension of the context vector of the event e above to a temporary vector f is
a bit of a subtlety. We need to ensure that, when multiply is invoked successively on the
initial context vector attached to a piece of data, that we maintain context values for each
of the relevant event dimensions in the model. Since the event’s context vector is not
required to have entries for all of the model’s relevant dimensions, as discussed above, we
risk losing some information. Hence, an extension vector with the multiplicative identity
in each of the extended components, is introduced.

5 Application to SIATM Use Cases

The Secure Information ATM (SIATM) is an ATM-style machine currently under devel-
opment. The underlying concept is that it handles transactions involving information,
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as opposed to currency. It will be deployed as the gateway for information transactions
to/from a classified network or networks, and provides a strong audit trail linking such
transactions to (strongly) identified users in a highly accreditable solution. There are a
number of possible use cases which may be supported. Here we shall focus on a few of
the simpler ones, including USB transfer of content between SIATMs, printing of RFID-
tagged documents and downgrade of documents between classification levels. With regards
to RFID-tagging of documents, this allows for the automation of an electronic Classified
Document Register (CDR), adding printed documents automatically to the user’s CDR,
and transferring documents between users’ CDR’s with ease via a suitable transaction at
the SIATM involving both users. The focus is on security, though combined with ease of
use.

We model the SIATM at an idealised abstract level as containing an audit log of critical
operations (modelled as a sequence of events) and a set of files. It may have at most one
USB memory stick inserted, and it may have at most one user logged in at any given time.
In addition, we model a CDR documenting ownership of the set of files. For simplicity of
exposition, it simply tracks current ownership status rather than a history of files owned
for each user.

We shall use the probabilistic model described in the previous section. Note that these
probabilities are to be interpreted as conditional probabilities given the assumption that
an appropriate signature check (a trivial integrity guard) on the file passed correctly, i.e.
we focus on the broader aspects of integrity which are the focus of this paper and assume
simplistic unauthorised data modification is prevented.

As a general point in this analysis, we note that the reliability and tamper resistance
of the SIATM are critical - any malicious software in the device can clearly modify the
underlying file data.

Regarding document printing, we introduce the notion of hard copies of documents in
the system, as well as a CDR. Note that the CDR tracks ownership not only of these hard
copies, but also of electronic files stored on USB memory sticks (the only medium we have
in our model).

Obviously, we need to introduce a specific Integrity Model. To that end, we utilise
and extend the previously introduced probabilistic model. The SIATM-specific tailoring
of the generic probabilistic model simply involves specification of the exact set of relevant
dimensions and the relevant dimensions for each event type.
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ModelOne
ProbabilityModel

relevantDimensions = {sourceAuthentication,
sourceAuthorisation, tamperResistance, reliability , time,
completeness, storage, transport , sourceReputation}

dom relevantEventDimensions = {copyToUSB , downgradeDoc, printDoc,
transferDoc, copyFromUSB}

ran({copyToUSB}C relevantEventDimensions) =
{sourceAuthentication, sourceAuthorisation, tamperResistance,
reliability , time, completeness, storage, transport}

ran({downgradeDoc}C relevantEventDimensions) =
{sourceAuthentication, sourceAuthorisation, tamperResistance,
reliability , time, completeness, storage, transport ,
sourceReputation}

ran({printDoc}C relevantEventDimensions) =
{sourceAuthentication, sourceAuthorisation, tamperResistance,
reliability , time, completeness, storage, transport}

ran({transferDoc}C relevantEventDimensions) =
{sourceAuthentication, sourceAuthorisation, tamperResistance,
reliability , time, completeness,
sourceReputation}

ran({witnessedDowngradeDoc}C relevantEventDimensions) =
{sourceAuthentication, sourceAuthorisation, tamperResistance,
reliability , time, completeness, storage, transport ,
sourceReputation}

ran({copyFromUSB}C relevantEventDimensions) =
{sourceAuthentication, sourceAuthorisation, tamperResistance,
reliability , time, completeness, storage, transport}

The USB stick is introduced. It is simply a container for files.

USB

files : FFile

readFile
∆(files)
file? : File

files ′ = files ∪ {file?}

writeFile
file! : files

The ATM is a container of files (with designated access by users) and a log, and may
have a user logged in and/or a USB memory stick inserted. Various hard-coded parameters
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indicate its reliability in various context dimensions. For example, userAuthenticationVa-
lue indicates the probability for the system of correct authentication of a user using a
biometric factor in addition to an RFID card swipe. For simplicity in this example model,
this is assumed to be constant across all users.

ATM

files : FFile;
log : seq LogEvent ;
user : FUser ;
timeATM : N;
usb : FUSB ;
allowedUsers : FUser ;
fileAccess : File ↔ User ;
reliabilityValue : ContextValueProb;
tamperResistanceValue : ContextValueProb;
userIdentificationValue : ContextValueProb;

[user does simple RFID swipe]
userAuthenticationValue : ContextValueProb;

[biometric authentication]
userAuthorisationValue : ContextValueProb;
storageReliabilityValue : ContextValueProb

(#user) ≤ 1
user ⊆ allowedUsers
(#usb) ≤ 1

logEvent
∆(log)
e? : LogEvent

log ′ = log a 〈e?〉

tick
∆(timeATM )

timeATM ′ = timeATM + 1

login
∆(user)
user? : User ;
e! : LogEvent

user = ∅
user? ∈ allowedUsers
e!.type = login
e!.timestamp = timeATM ∧ e!.user = user?
user ′ = {user?}
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loginATM =̂ login ‖ logEvent

insertUSB
∆(usb)
usb? : USB

user 6= ∅
usb = ∅
usb′ = {usb?}

removeUSB
∆(usb)

usb 6= ∅ ∧ usb′ = ∅
user 6= ∅
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writeFile
[writeFile is a utility method utilised]

[by a few high level use cases,]
[e.g. for printing and also transferring to USB.]
[It outputs a copy of the file with an updated]

[context vector, as well as a log entry for the event]
file? : files;
file! : File;
user? : User ;
eventType? : EventType;
e! : LogEvent

user = {user?}
file? 7→ user? ∈ fileAccess
e!.type = eventType? ∧ e!.timestamp = timeATM
e!.user ∈ user
∃m : Event •

dom file!.fileData = dom file?.fileData ∧
(∀n : dom file!.fileData •

(file!.fileData(n)).data = (file?.fileData(n)).data ∧
(file!.fileData(n)).context = (file?.fileData(n)).contextUpdate(m) ∧
(file!.fileData(n)).initialIntegrity = (file?.fileData(n)).initialIntegrity ∧
(file!.fileData(n)).model = (file?.fileData(n)).model) ∧

m.type = eventType? ∧
m.timestamp = timeATM ∧ m.user ∈ user ∧
m.contextVector =
{sourceAuthentication 7→ userIdentificationValue,

[no fingerprint check, so RFID user id confidence only]
sourceAuthorisation 7→ userAuthorisationValue,
tamperResistance 7→ tamperResistanceValue,
reliability 7→ reliabilityValue,
time 7→ reliabilityValue,
completeness 7→ reliabilityValue,
storage 7→ storageReliabilityValue,
transport 7→ reliabilityValue}

[The ATM version of each method logs the event to the SIATM’s log]
writeFileATM =̂ writeFile ‖ logEvent
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readFile
[Similar utility function. Updates ATM’s file set]

[with copy of given file, after updating context vector.]
∆(files,fileAccess)
file? : File;
user? : User ;
eventType? : EventType;
e! : LogEvent

user = {user?}
e!.type = eventType? ∧ e!.timestamp = timeATM
e!.user ∈ user
∃m : Event ; f : File •

dom f .fileData = dom file?.fileData ∧
(∀n : dom f .fileData •

(f .fileData(n)).data = (file?.fileData(n)).data ∧
(f .fileData(n)).context = (file?.fileData(n)).contextUpdate(m) ∧
(f .fileData(n)).initialIntegrity = (file?.fileData(n)).initialIntegrity ∧
(f .fileData(n)).model = (file?.fileData(n)).model) ∧

fileAccess ′ = fileAccess ∪ {f 7→ user?} ∧
files ′ = files ∪ {f } ∧
m.type = eventType? ∧
m.timestamp = timeATM ∧ m.user ∈ user ∧
m.contextVector =
{sourceAuthentication 7→ userIdentificationValue,

[no fingerprint check]
sourceAuthorisation 7→ userAuthorisationValue,
tamperResistance 7→ tamperResistanceValue,
reliability 7→ reliabilityValue,
time 7→ reliabilityValue,
completeness 7→ reliabilityValue,
storage 7→ storageReliabilityValue,
transport 7→ reliabilityValue}

readFileATM =̂ readFile ‖ logEvent
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transferDoc
[CDR transfer functionality.]

[Acts on what will be printed documents (not files in ATM fileset).]
[Updates context vector of printed document.]

[Idea is that this metadata will be attached via an electronic record or in RFID.]
∆(files)
file? : File;
file! : File;
source? : User ;
destination? : User ;
e! : LogEvent

user = {source?}
destination? ∈ allowedUsers
e!.type = transferDoc ∧ e!.timestamp = timeATM
e!.user ∈ user
∃m : Event •

dom file!.fileData = dom file?.fileData ∧
(∀n : dom file!.fileData •

(file!.fileData(n)).data = (file?.fileData(n)).data ∧
(file!.fileData(n)).context = (file?.fileData(n)).contextUpdate(m) ∧
(file!.fileData(n)).initialIntegrity = (file?.fileData(n)).initialIntegrity ∧
(file!.fileData(n)).model = (file?.fileData(n)).model) ∧

m.type = transferDoc ∧
m.timestamp = timeATM ∧ m.user ∈ user ∧
m.contextVector =
{sourceAuthentication 7→ userAuthenticationValue,
sourceAuthorisation 7→ userAuthorisationValue,
tamperResistance 7→ tamperResistanceValue,

[Electronic storage of file history]
reliability 7→ reliabilityValue,
time 7→ reliabilityValue,
completeness 7→ source?.reputation,

[Complete set of pages depends on user trustworthiness]
sourceReputation 7→ source?.reputation}

transferDocATM =̂ transferDoc ‖ logEvent

copyToUSBATM =̂ [ u? : usb ] • ([ eventType? : EventType|
eventType? = copyToUSB ]∧writeFileATM ) ‖ u?.readFile

copyFromUSBATM =̂ [ u? : usb | u? ∈ usb ] • u?.writeFile ‖ ([ eventType? : EventType|
eventType? = copyFromUSB ]∧readFileATM )

printDocATM =̂ [ eventType? : EventType|
eventType? = printDoc ]∧writeFileATM
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downgradeDocument
[This and next op are front ends for downgrading]

[This one with single user and next op is witnessed]
downgradeType! : EventType;
sourceAuthenticationValue! : ContextValueProb

downgradeType! = downgradeDoc
[User authenticates operation via fingerprint]

sourceAuthenticationValue! = userAuthenticationValue

witnessedDowngradeDocument
downgradeType! : EventType;
sourceAuthenticationValue! : ContextValueProb

downgradeType! = witnessedDowngradeDoc
[Both users authenticated operation via fingerprints]

sourceAuthenticationValue! = userAuthenticationValue ∗ userAuthenticationValue
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downgradeDocumentCommon
∆(files)
downgradeType? : EventType;
sourceAuthenticationValue? : ContextValueProb;
file? : File;

[User picks data elements to redact]
userSelection? : FN;
e! : LogEvent

userSelection? ⊆ 1 . .#file?.fileData
user 6= ∅
e!.type = downgradeType? ∧ e!.timestamp = timeATM
e!.user ∈ user
∃ u : user • (file?, u) ∈ fileAccess ∧

(∃ f : File; m : Event ; filteredData : seq DataElement |
filteredData = userSelection? � file?.fileData •
dom f .fileData = dom filteredData ∧
(∀n : dom f .fileData •

(f .fileData(n)).data = (filteredData(n)).data ∧
(f .fileData(n)).context = (filteredData(n)).contextUpdate(m) ∧
(f .fileData(n)).initialIntegrity = (filteredData(n)).initialIntegrity ∧
(f .fileData(n)).model = (filteredData(n)).model) ∧

m.type = downgradeType? ∧
m.timestamp = timeATM ∧ m.user ∈ user ∧
files ′ = files ∪ {f } ∧
m.contextVector =
{sourceAuthentication 7→ sourceAuthenticationValue?,
sourceAuthorisation 7→ userAuthorisationValue,
tamperResistance 7→ tamperResistanceValue,
reliability 7→ reliabilityValue,
time 7→ reliabilityValue,
completeness 7→ reliabilityValue,
storage 7→ storageReliabilityValue,
transport 7→ reliabilityValue,
sourceReputation 7→ u.reputation})

downgradeDocATM =̂ downgradeDocument ‖ downgradeDocumentCommon ‖ logEvent

witnessedDowngradeDocATM =̂ witnessedDowngradeDocument ‖
downgradeDocumentCommon ‖ logEvent
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logout
∆(user)
e! : LogEvent

usb = ∅
user 6= ∅ ∧ user ′ = ∅
e!.type = logout ∧ e!.timestamp = timeATM
e!.user ∈ user

logoutATM =̂ logout ‖ logEvent

CDR

possession : File 7→ User

add
file? : File;
user? : User

file? 6∈ dom possession
possession ′ = possession ∪ {file? 7→ user?}

transfer
file? : File;
source?, destination? : User

file? 7→ source? ∈ possession
possession ′ = possession ⊕ {file? 7→ destination?}

remove
file? : File

file? ∈ dom possession
possession ′ = {file?} −C possession
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System

atms : FATM ;
usbs : FUSB ;
cdr : CDR;
model : ModelOne;
printedDocs : FFile
∆
files : FFile

files = printedDocs ∪∪{a : atms • a.files} ∪∪{u : usbs • u.files}
dom cdr .possession = printedDocs ∪∪{u : usbs • u.files}
∀ f : files • ∀ d : ran f .fileData • d .model = model

tick =̂ ∧a : atms • a.tick

loginATM =̂ [ atm? : atms ] • atm?.loginATM

insertUSBATM =̂ [ atm? : atms ] • [ usb? : usbs ]∧atm?.insertUSB

copyToUSBATM =̂ [ atm? : atms ] • atm?.copyToUSBATM ∧ cdr .add

copyFromUSBATM =̂ [ atm? : atms ] • atm?.copyFromUSBATM

printDocATM =̂ [ atm? : atms ] • atm?.printDocATM ∧ cdr .add ‖
[∆(printedDocs)file? : File | printedDocs ′ = printedDocs ∪ {file?} ]

removeUSBATM =̂ [ atm? : atms ] • atm?.removeUSB

logoutATM =̂ [ atm? : atms ] • atm?.logoutATM

transferDocATM =̂ [ atm? : atms; f ? : printedDocs ] • f ?.getId ‖
atm?.transferDocATM ∧ cdr .transfer

downgradeDocATM =̂ [ atm? : atms ] • atm?.downgradeDocATM

witnessedDowngradeDocATM =̂ [ atm? : atms ] • atm?.witnessedDowngradeDocATM

evaluateIntegrity =̂ [file? : files ] • file?.evaluateIntegrity

6 Future Work

There are a number of open questions which need to be explored in ongoing work. For
example, the specific operation of data merging needs to be considered, beyond the ini-
tial discussion currently in Appendix C. This is the amplification mechanism (a critical
requirement of our model), and it can serve to increase integrity if independent sources
attest to the same data value(s). In general, most operations serve to reduce context di-
mensions’ confidence values, but the data merging example is (one of) the exception(s) in
which confidence in integrity may be increased. Also, one must handle the management
of amplification of integrity via merging data from partially independent sources.

Similarly, integrity concepts such as Completeness and Consistency, which may make
sense only across a file or set of files, are not yet considered.

One other factor which must be further expanded upon is the change in integrity (or
required integrity) of the data due to change of the context/environment, e.g. at the
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simplest level the data is no longer correct because the situation has changed. The issue
of required/sufficient integrity depending on context has many critical implications for
Military systems. As a simple and obvious example, a targeting process may report a
geographic location within a defined error range. The resulting course of action or method
of operation by a Commander could be very different if the location was in a very sparsely
populated desert, as opposed to a densely populated urban environment. Context of the
integrity measurement for the purposes of deciding whether sufficient integrity exists given
the circumstances of the moment is essential.

One approach to these issues is to take this environmental context into account as an
input into evaluateIntegrity. Another approach is to address the change in environment
by use of a different integrity model index (which leads then to use, in particular, of a
different evaluateIntegrity function) in that situation, with the appropriate constraints on
the consistency of the set of relevant context dimensions for each model in order to make
the interpretation consistent. This forms the basis of ongoing work.

The exploration in Appendix A of how to represent the Biba model within our frame-
work raises the question of how we extend the model to accommodate security policy
specification.

As discussed in Section 2.1, further research is required in order to explore various
alternative mechanisms for handling data transition between models in a natural way.

Finally, we need to take the formal model further insofar as we need to explicitly claim
and prove appropriate security properties.

As well as to anonymous referees, the authors are indebted to the following individuals
for discussions, suggestions and advice: Angela Billard, Michael Chase, Aaron Frishling,
Damian Marriott, Alex Murray, Tristan Newby and Chris North.
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Appendix A Biba

As another example of a specific model, we define here an instance of the generic model
which implements the Biba model. We shall consider Integrity Values of only Low and
High. For simplicity, we shall take Context Values also in this same space. Using a
single Context Dimension, the evaluateIntegrity mechanism is then no more than a simple
identity map from the (unique) Context Value in the Context Vector across to the Integrity
Level space.

Binary ::= Low | High

ContextValueBinary
ContextValue

value : Binary

IntegrityLevelBinary
IntegrityLevel

value : Binary

type = IntegrityLevelBinaryType

In the specification of the model, evaluateIntegrity is defined as an identity map when
the initial integrity is High. Otherwise the integrity, starting Low, remains Low.

contextUpdate must take the context vector of the object under consideration and
produce a context vector whose (again single remember, as this is one dimensional) context
value is the minimum of the context value of the object under consideration and that of
the event (we have not defined an ordering on the Context Value space, and so we need
to define it as a simple truth table).
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BibaModel
IntegrityModel

unitVector : ContextDimension 7→ ContextValueBinary

∀ v : ran unitVector • v .value = High

ran(dom(dom contextUpdate)) ⊆ ContextDimension 7→ ContextValueBinary
evaluateIntegrity ∈

IntegrityLevelBinary × (ContextDimension 7→ ContextValueBinary) 7→ IntegrityLevelBinary
relevantDimensions = {generic}
∀ i : IntegrityLevelBinary ;

v : ContextDimension 7→ ContextValueBinary | (i , v) ∈ dom evaluateIntegrity •
(∃ p : ContextValueBinary ; j : IntegrityLevelBinary •

v(generic) = p ∧ evaluateIntegrity(i , v) = j ∧
(i .value = Low ⇒ j .value = Low) ∧
(i .value = High ⇒ j .value = p.value))

∀ l : IntegrityLevelBinary ; v : ContextVector ; e : Event | (l , v , e) ∈ dom contextUpdate •
∃ p, q : ContextValueBinary • e.contextVector(generic) = p ∧ q .value = Low ∧

p.value = High ⇒ contextUpdate(l , v , e) = {(generic, v(generic))} ∧
p.value = Low ⇒ contextUpdate(l , v , e) = {(generic, q)}

Although we will not go into full details here, how this would be applied would be
that there would be context vectors attached to subjects (users/processes) as well as data
objects in the system. An operation which results in information flow to a subject/object
(e.g. user when user reads data or object when user writes data) may result in the context
vector of that flow target being updated.

An overarching security policy might say e.g. any operation that results in the integrity
of the target being reduced is disallowed (Biba Strict Integrity Policy). This amounts to
no write up or read down. We have not discussed security policy in this paper. It exists at
the next level up - now we have the capability to evaluate integrity, our policy will specify,
as a consequence, which actions are allowed. This is left to future work.
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Appendix B Data Export

Transition of a DataElement from one model to another is accomplished by the following
operation, which simply sets the initial integrity level of the new DataElement to the
current integrity of the input DataElement, and initialises its context vector appropriately
(unit value in the relevant dimensions of the new model). The raw data value is, of course,
copied across unchanged.

exportDataElement : DataElement × ↓IntegrityModel → DataElement

dom exportDataElement = {d : DataElement ; m : ↓IntegrityModel |
∀ k : ran((d .model).evaluateIntegrity);
l : ran(m.evaluateIntegrity) • k .type = l .type}

∀ d : DataElement ; m : ↓IntegrityModel •
∃ e : DataElement • e.data = d .data ∧

e.context = m.unitVector ∧
e.initialIntegrity = d .integrity ∧
e.model = m ∧
exportDataElement(d ,m) = e

Note: the domain of the exportDataElement method is constrained so that it may only
map between models with compatible Integrity Level spaces (or else we would require an
additional layer of transition).
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Appendix C Vector Space Structure and

Fusion/Amplification

We shall consider the definition of addition and scalar multiplication operations on the
space of context vectors in the probabilistic model in order to make it into a vector
space.

Clearly, since we are trying to interpret the coordinates in the n-tuples as probabilities,
we cannot naively add coordinate-wise or we quickly go out of the range [0, 1].

As a simple example of how amplification might be achieved within our framework, we
define the addition of vectors to correspond to the simple combination of the probabilities
from two independent sources of the same data. Consider a trivial example of two sensors
reporting on the outcome of a (fair and unbiased) coin toss. One reports accurately with
probability c and the other with probability d . The “sum” of coordinates c and d , i.e.
the probability that say the result is heads given that both sensors report heads, would
be cd/(1− c − d + 2cd).

Extending this coordinate definition for the whole vector, for Context Vectors c and d
and a scalar λ, we may define

(c + d)i = cidi/(1− ci − di + 2cidi)

(λ ·c)i = ci
λ/((1− ci)

λ + ci
λ)

This effectively makes the amplification operation in the data space, for independent
sources, homomorphic with vector addition in the context space. That is, the amplification
a of independently sourced Data Elements d1 and d2 is such that c(a(d1, d2)) = c(d1) +
c(d2), where the function c returns the context vector of the data item. (We assume for
simplicity now that the underlying data is actually the same between the two sources.
Cases where there is overlap or even contradictions are to be considered once we have
made sense of this simplest possible case). Note that this resultant piece of data a(d1, d2)
then decays by context update as operations are subsequently performed on it, etc.

In practise, for not fully independent sources, the amplification function (arrived at by
Dempster-Shafer or other mechanism) will be such that c(a(d1, d2))i is less (coordinate-
wise) than this (upper) bound. In fact, the discrepancy between the vectors c(a(d1, d2))
and c(d1) + c(d2) will give some measure of the degree of dependence of the sources, e.g.

their independence is correlated with c(a(d1,d2))·(c(d1)+c(d2))
(c(d1)+c(d2))·(c(d1)+c(d2))

, i.e. making use of the scalar
product in the vector space.

We may check that these definitions of vector space addition and scalar multiplication
satisfy the appropriate relations to be a vector space.

However, a (trivial) observation is that we at best have a semi-vector space [Liu 2010]
(there is no additive inverse of any element).
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